Machine learning without madness

Run your machine learning workflows interactively from your laptop. Use any infrastructure. Keep any workflow reproducible.

Error. Your form has not been submittedEmoji
This is what the server says:
There must be an @ at the beginning.
I will retry
Reply

How dstack works

  • 1

    Define workflows

    Machine learning workflows consist of steps. Every step may have input parameters, may depend on other steps, and may produce artifacts.

    Define your workflows in the form of YAML files within your project.

    No changes to your code are required.

  • 2

    Set up runners

    Workflows run on a pool of machines that are called runners.

    You can register any AWS' EC2 instance or GCP's or Azure's VM, or your own server as a runner by running a simple bash command.

  • 3

    Run workflows interactively

    Run any workflow with your input parameters via the CLI on your laptop.

    The workflow will run on one of the available runners.

Because dstack is aware of your workflows, their exact steps, and input parameters, any run can be back-tracked and reproduced end-to-end on any infrastructure.

FAQ

Get early access to dstack

Sign up to join our waitlist

Error. Your form has not been submittedEmoji
This is what the server says:
There must be an @ at the beginning.
I will retry
Reply
Runs on Unicorn Platform