Docker Compose¶
All backends except runpod
, vastai
, and kubernetes
allow using Docker and Docker Compose inside dstack
runs.
This example shows how to deploy Hugging Face Chat UI with TGI serving Llama-3.2-3B-Instruct using Docker Compose .
Prerequisites
Once dstack
is installed, go ahead clone the repo, and run dstack init
.
$ git clone https://github.com/dstackai/dstack
$ cd dstack
$ dstack init
Deployment¶
Running as a task¶
type: task
name: chat-ui-task
privileged: true
image: dstackai/dind
env:
- MODEL_ID=meta-llama/Llama-3.2-3B-Instruct
- HF_TOKEN
working_dir: examples/misc/docker-compose
commands:
- start-dockerd
- docker compose up
ports:
- 9000
# Uncomment to leverage spot instances
#spot_policy: auto
resources:
# Required resources
gpu: "nvidia:24GB"
services:
app:
image: ghcr.io/huggingface/chat-ui:sha-bf0bc92
command:
- bash
- -c
- |
echo MONGODB_URL=mongodb://db:27017 > .env.local
echo MODELS='`[{
"name": "${MODEL_ID?}",
"endpoints": [{"type": "tgi", "url": "http://tgi:8000"}]
}]`' >> .env.local
exec ./entrypoint.sh
ports:
- 127.0.0.1:9000:3000
depends_on:
- tgi
- db
tgi:
image: ghcr.io/huggingface/text-generation-inference:sha-704a58c
volumes:
- tgi_data:/data
environment:
HF_TOKEN: ${HF_TOKEN?}
MODEL_ID: ${MODEL_ID?}
PORT: 8000
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: all
capabilities: [gpu]
db:
image: mongo:latest
volumes:
- db_data:/data/db
volumes:
tgi_data:
db_data:
Deploying as a service¶
If you'd like to deploy Chat UI as an auto-scalable and secure endpoint,
use the service configuration. You can find it at examples/misc/docker-compose/service.dstack.yml
Running a configuration¶
To run a configuration, use the dstack apply
command.
$ HF_TOKEN=...
$ dstack apply -f examples/examples/misc/docker-compose/task.dstack.yml
# BACKEND REGION RESOURCES SPOT PRICE
1 runpod CA-MTL-1 18xCPU, 100GB, A5000:24GB yes $0.12
2 runpod EU-SE-1 18xCPU, 100GB, A5000:24GB yes $0.12
3 gcp us-west4 27xCPU, 150GB, A5000:24GB:2 yes $0.23
Submit the run chat-ui-task? [y/n]: y
Provisioning...
---> 100%
Persisting data¶
To persist data between runs, create a volume and attach it to the run configuration.
type: task
name: chat-ui-task
privileged: true
image: dstackai/dind
env:
- MODEL_ID=meta-llama/Llama-3.2-3B-Instruct
- HF_TOKEN
working_dir: examples/misc/docker-compose
commands:
- start-dockerd
- docker compose up
ports:
- 9000
# Uncomment to leverage spot instances
#spot_policy: auto
resources:
# Required resources
gpu: "nvidia:24GB"
volumes:
- name: my-dind-volume
path: /var/lib/docker
With this change, all Docker data—pulled images, containers, and crucially, volumes for database and model storage—will be persisted.
Source code¶
The source-code of this example can be found in
examples/misc/docker-compose
.
What's next?¶
- Check dev environments, tasks, services, and protips.