AMD¶
dstack
supports running dev environments, tasks, and services on AMD GPUs.
You can do that by setting up an SSH fleet
with on-prem AMD GPUs or configuring a backend that offers AMD GPUs such as the runpod
backend.
Deployment¶
Most serving frameworks including vLLM and TGI have AMD support. Here's an example of a service that deploys Llama 3.1 70B in FP16 using TGI and vLLM .
type: service
name: amd-service-tgi
# Using the official TGI's ROCm Docker image
image: ghcr.io/huggingface/text-generation-inference:sha-a379d55-rocm
env:
- HF_TOKEN
- MODEL_ID=meta-llama/Meta-Llama-3.1-70B-Instruct
- TRUST_REMOTE_CODE=true
- ROCM_USE_FLASH_ATTN_V2_TRITON=true
commands:
- text-generation-launcher --port 8000
port: 8000
# Register the model
model: meta-llama/Meta-Llama-3.1-70B-Instruct
# Uncomment to leverage spot instances
#spot_policy: auto
resources:
gpu: MI300X
disk: 150GB
type: service
name: llama31-service-vllm-amd
# Using RunPod's ROCm Docker image
image: runpod/pytorch:2.4.0-py3.10-rocm6.1.0-ubuntu22.04
# Required environment variables
env:
- HF_TOKEN
- MODEL_ID=meta-llama/Meta-Llama-3.1-70B-Instruct
- MAX_MODEL_LEN=126192
# Commands of the task
commands:
- export PATH=/opt/conda/envs/py_3.10/bin:$PATH
- wget https://github.com/ROCm/hipBLAS/archive/refs/tags/rocm-6.1.0.zip
- unzip rocm-6.1.0.zip
- cd hipBLAS-rocm-6.1.0
- python rmake.py
- cd ..
- git clone https://github.com/vllm-project/vllm.git
- cd vllm
- pip install triton
- pip uninstall torch -y
- pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.1
- pip install /opt/rocm/share/amd_smi
- pip install --upgrade numba scipy huggingface-hub[cli]
- pip install "numpy<2"
- pip install -r requirements-rocm.txt
- wget -N https://github.com/ROCm/vllm/raw/fa78403/rocm_patch/libamdhip64.so.6 -P /opt/rocm/lib
- rm -f "$(python3 -c 'import torch; print(torch.__path__[0])')"/lib/libamdhip64.so*
- export PYTORCH_ROCM_ARCH="gfx90a;gfx942"
- wget https://dstack-binaries.s3.amazonaws.com/vllm-0.6.0%2Brocm614-cp310-cp310-linux_x86_64.whl
- pip install vllm-0.6.0+rocm614-cp310-cp310-linux_x86_64.whl
- vllm serve $MODEL_ID --max-model-len $MAX_MODEL_LEN --port 8000
# Service port
port: 8000
# Register the model
model: meta-llama/Meta-Llama-3.1-70B-Instruct
# Uncomment to leverage spot instances
#spot_policy: auto
resources:
gpu: MI300X
disk: 200GB
Note, maximum size of vLLM’s KV cache
is 126192, consequently we must set MAX_MODEL_LEN
to 126192. Adding /opt/conda/envs/py_3.10/bin
to PATH ensures we use the Python 3.10 environment necessary for the pre-built binaries compiled specifically for this version.
To speed up the
vLLM-ROCm
installation, we use a pre-built binary from S3. You can find the task to build and upload the binary inexamples/deployment/vllm/amd/
.
Docker image
If you want to use AMD, specifying image
is currently required. This must be an image that includes
ROCm drivers.
To request multiple GPUs, specify the quantity after the GPU name, separated by a colon, e.g., MI300X:4
.
Fine-tuning¶
Below is an example of LoRA fine-tuning Llama 3.1 8B using TRL
and the mlabonne/guanaco-llama2-1k
dataset.
type: task
name: trl-amd-llama31-train
# Using RunPod's ROCm Docker image
image: runpod/pytorch:2.1.2-py3.10-rocm6.1-ubuntu22.04
# Required environment variables
env:
- HF_TOKEN
# Commands of the task
commands:
- export PATH=/opt/conda/envs/py_3.10/bin:$PATH
- git clone https://github.com/ROCm/bitsandbytes
- cd bitsandbytes
- git checkout rocm_enabled
- pip install -r requirements-dev.txt
- cmake -DBNB_ROCM_ARCH="gfx942" -DCOMPUTE_BACKEND=hip -S .
- make
- pip install .
- pip install trl
- pip install peft
- pip install transformers datasets huggingface-hub scipy
- cd ..
- python examples/fine-tuning/trl/amd/train.py
# Uncomment to leverage spot instances
#spot_policy: auto
resources:
gpu: MI300X
disk: 150GB
Below is an example of fine-tuning Llama 3.1 8B using Axolotl and the tatsu-lab/alpaca dataset.
type: task
name: axolotl-amd-llama31-train
# Using RunPod's ROCm Docker image
image: runpod/pytorch:2.1.2-py3.10-rocm6.0.2-ubuntu22.04
# Required environment variables
env:
- HF_TOKEN
# Commands of the task
commands:
- export PATH=/opt/conda/envs/py_3.10/bin:$PATH
- pip uninstall torch torchvision torchaudio -y
- python3 -m pip install --pre torch==2.3.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.0/
- git clone https://github.com/OpenAccess-AI-Collective/axolotl
- cd axolotl
- git checkout d4f6c65
- pip install -e .
- cd ..
- wget https://dstack-binaries.s3.amazonaws.com/flash_attn-2.0.4-cp310-cp310-linux_x86_64.whl
- pip install flash_attn-2.0.4-cp310-cp310-linux_x86_64.whl
- wget https://dstack-binaries.s3.amazonaws.com/xformers-0.0.26-cp310-cp310-linux_x86_64.whl
- pip install xformers-0.0.26-cp310-cp310-linux_x86_64.whl
- git clone --recurse https://github.com/ROCm/bitsandbytes
- cd bitsandbytes
- git checkout rocm_enabled
- pip install -r requirements-dev.txt
- cmake -DBNB_ROCM_ARCH="gfx942" -DCOMPUTE_BACKEND=hip -S .
- make
- pip install .
- cd ..
- accelerate launch -m axolotl.cli.train axolotl/examples/llama-3/fft-8b.yaml
# Uncomment to leverage spot instances
#spot_policy: auto
resources:
gpu: MI300X
disk: 150GB
Note, to support ROCm, we need to checkout to commit d4f6c65
. You can find the installation instruction in rocm-blogs .
To speed up installation of
flash-attention
andxformers
, we use pre-built binaries uploaded to S3. You can find the tasks that build and upload the binaries inexamples/fine-tuning/axolotl/amd/
.
Running a configuration¶
Once the configuration is ready, run dstack apply -f <configuration file>
, and dstack
will automatically provision the
cloud resources and run the configuration.
$ HF_TOKEN=...
$ dstack apply -f examples/deployment/vllm/amd/.dstack.yml
Source code¶
The source-code of this example can be found in
examples/deployment/tgi/amd
,
examples/deployment/vllm/amd
,
examples/fine-tuning/axolotl/amd
and
examples/fine-tuning/trl/amd
What's next?¶
- Browse TGI , vLLM , Axolotl , TRL and ROCm Bitsandbytes
- Check dev environments, tasks, and services.